NTUA

SOLAR SAFE WATER Puerto Iguazú - Misiones - República Argentina

Photocatalytic Treatment of Humic and Fulvic Substances in Solar Cocentric Parabolic Concentrator

E. Remoudaki, A. Hatzikioseyian, R. Vidali, P. Kousi & M. Tsezos

Dissolved Organic Material (DOM) in natural waters

The largest pool of organic material in the water column is dissolved organic material (DOM).

Aquatic humus accounts for 40-60% of the DOM.

Humic substances are formed during the degradation of plant and animal material, and both microbiological and abiotic processes contribute to their production.

Origin – Composition of HAs

Formation pathways of Humic Substances

- Heterogeneous polymeric organic acids: aliphatic and aromatic character.
- Rich in oxygen-containing moieties : carboxyl, phenolic, alcoholic, and ketonic.
- HS impart a brown/yellow colour to the water.
- They complex with metals and organic pollutants.
- They affect the mobility and bioavailability of aquatic contaminants.
- They are precursors of mutagenic halogenated compounds in water formed after chlorination.
- HS play also the role of photosensitizers in aquatic photochemical processes.

HA Structure

Proposed Molecular Structure of Fulvic Acid

Effects of UV radiation on Humic Substances

- UV provide the most energetic radiation available for photochemical reactions in surface waters
 - Reduction of dissolved organic carbon average molecular weight
 - Changes in water optical properties
 - Production of a complex mixture of reactive oxygen species
 - Production of carbon photoproducts:
 - $> CO_2$ production from photodecarboxylation
 - ➤ Low molecular weight compounds including carbonyls and organic acids → biologically available compounds generated by photochemical reactions → growth enhancement of heterotrophic bacteria

Photolysis

molecule

Semi-conductor Photocatalysis TiO₂ Photocatalysis

TiO₂ : Stable, non toxic, low energy band gap

One of the most suitable semiconducting materials for photocatalysis

<u>STEPS</u>

- 1. Transfer of the reactant in the fluid phase to the catalyst surface
- 2. Adsorption of the reactant
- 3. Reaction in the adsorbed phase
- 4. Desorption of the products
- 5. Removal of the products from the interface region

Semi-conductor Photocatalysis TiO₂ Photocatalysis

HA act as a natural photosensitizer in heterogeneous as well as homogeneous solutions

Semi-conductor Photocatalysis TiO₂ Photocatalysis

- $TiO_2 + hv \rightarrow e_{CB}^- + h_{VB}^+$
- Organic molecule + $O_2 \dots \rightarrow CO_2 + H_2O$ hv≥E_{bg}
- h⁺_{VB} + OH⁻ →OH[•]
- Organic radicals + $O_2 \rightarrow CO_2 + H_2O$
- $e_{CB}^- + O_2^- \rightarrow O_2^-$
- $2O_2^- + 2H^+ \rightarrow H_2O_2^- + O_2^-$
- $H_2O_2 + e_{CB} \rightarrow OH + OH^-$

Elementary reaction steps of HA on the TiO₂/water interface

Target of the present study

Materials and Methods

Methodology followed

- Experiments without catalyst_: to study only the photolysis.
- Study of the adsorption of HA on the immobilized TiO₂. The CPC reactor operates initially for 15-20h in the dark.
- Experiments with 1049 AHLSTROM paper containing 20g/m² of TiO₂ Degussa P25. The solution is permanently in contact with 1.2 g/l TiO₂.
- The UV 254nm reactor is used for comparison and confirmation of the results obtained by the CPC reactor.

Materials and Methods

The photocatalytic reactors

Materials and Methods

Analytical Methods

Gallic Acid

Folin–Ciocalteau Method Total Organic Carbon (TOC)

HACH

Dissolved Organic Matter (DOM) Oxidation Catalyst + 680°C NDIR CO₂ Analysis

Results HA Photolysis - CPC Reactor

✓ 70 - 80% Phototransformation of HA → 2 - 2.5MJ/m²L
✓ Photolysis: Zero order [HA]

ResultsHA Photolysis & PhotocatalysisHS (Aldrich): 10 mg/l in HS \cong 5 mg/l in C

- **Photolysis (Control)**
- Photolysis + Photocatalysis : Immobilized TiO₂ (paper)

Photolysis + Photocatalysis : Immobilized TiO₂ (unwashed paper)

Comparison between HA Photolysis & Photocatalysis CPC Reactor

✓ About 50% adsorption of HA on immobilized TiO₂

- ✓ Photolysis Self-Catalysis: 80% Phototransformation of HA, E=2-2.5MJ/m²L
- ✓ Photocatalysis: >90% Phototransformation of HA → 2-2.5MJ/m²L

✓ 30% Complete Mineralization Solar Safe Water

HA Photocatalysis: Effect of Initial Concentration CPC Reactor

- \checkmark 70% Phototransformation of HA $\rightarrow~2$ 3 MJ/m²L
- ✓ Photolysis: Zero order [HA]
- ✓ 30% Complete Mineralization

Gallic Acid : Photolysis & Photocatalysis CPC Reactor

✓ Photolysis: 30 – 40% of the initial [GA]

✓ Photocatalysis: 90 – 95% of the initial [GA]

✓ Photocatalysis: Independent of initial [GA] (Zero order) Solar Safe Water

Summary : Photolysis & Photocatalysis CPC Reactor

- A Phototransformation: 70–80%, E=2–3 MJ/m²L by photolysis. This means that HA molecules are efficient photosensitizers capable of self-catalyzing their oxidation.
- Immobilized TiO₂ contributes to a further 10 20% HA phototransformation.
- Complete mineralization of HA is estimated to be about 30%.
- ✤ GA Photolysis leads to a 40% degradation of the molecule.
- GA Photocatalytic degradation by immobilized TiO₂ may be complete.

Results HA Photolysis - UV Reactor

 \checkmark 70 - 80% Phototransformation of HA

✓ Photolysis: Zero order [HA]

Comparison between HA Photolysis & Photocatalysis UV Reactor

 ✓ At 254 nm the phenomenon of self-catalytic transformation of HA molecules is more pronounced and seems to be predominant.

HA Photocatalysis: Effect of Initial Concentration UV Reactor

✓ Photolysis – Photocatalysis : Zero order [HA]

GA Photocatalytic Degradation UV Reactor

Summary : Photolysis & Photocatalysis UV Reactor

A Phototransformation monitoring at 254 nm showed clearly that HA molecules are efficient photosensitizers capable of self-catalyzing their oxidation.

Complete mineralization of HA is estimated to be about 30%.

♦ GA Photocatalytic degradation by immobilized TiO₂ may be complete.

Conclusions

Fin-Type CPC reactor with immobilized TiO₂ is efficient for the photocatalytic treatment of DOM: HS and potential products of their degradation: e.g. Gallic Acid.

♦ HA Phototransformation: 70-80%, E=2-3 MJ/m²L by photolysis ⇒ HA molecules are efficient photosensitizers capable of self-catalyzing their oxidation.

*Immobilized TiO_2 contributes to a further 10–20% HA phototransformation.

Solar Safe Water

Conclusions

Complete mineralization of HA is estimated to be about 30%.

- GA Photolysis leads to a 40% degradation of the molecule.
- ♦ GA Photocatalytic degradation by immobilized TiO₂ may be complete.

A Phototransformation monitoring at 254 nm showed clearly that HA molecules are efficient photosensitizers capable of autocatalyse their oxidation.

Thank You I